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The work described in this report was performed by the Systems Division of 
the Jet Propulsion Laboratory. 
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Abstract 

This report is concerned with the statistical optimal estimation of parameters x 
of nonlinear systems. If a quadratic loss function is used, then the conditional 
mean of x given the observations and a priori information is used. The condi- 
tional mean is calculated using an n-dimensional Gram-Charlier expansion of the 
a posteriori probability density function. A numerical method for finding this 
distribution is given, and some of its properties are discussed, including the case 
for which the method is optimal. 

If a more general kind of loss function is used and a mean-square approxima- 
tion to the a posteriori probability density function is desired, a Hermite function 
expansion which converges in the mean square is employed. Again, numerical 
methods are given for finding the coefficients of the expansion, and the opti- 
mality of this procedure is discussed. 
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Optimal Nonlinear Estimation Based on 
Orthogonal Expansions 

1. Introduction 

This paper is concerned with the statistical optimal 
estimation of parameters of nonlinear systems. The meth- 
ods presented herein are being applied to various prob- 
lems in orbit determination to ascertain the effects of 
nonlinearities in the system. 

Let x be an n X 1 vector of parameters to be esti- 
mated. Although the methods given here do not require 
much more computation than for maximum likelihood 
methods when n is 1 (in fact, the amount of computation 
required may be less), the amount of computation in- 
creases rapidly with n. Thus for large n these methods 
will probably not be used routinely, but as checks on 
other, simpler methods, such as maximum likelihood 
estimates. These methods can serve not only as a check 
on the suitability of using a maximum likelihood esti- 
mate but also to ascertain whether a purported maximum 
likelihood estimate is just that. Here, certain partial 
derivatives involved in maximum likelihood estimates 
which may be subject to error are not used. 

Let z be the k X 1 vector of observations and y be the 
k X 1 vector of observations which would result from a 
noiseless system. For simplicity, assume that x is a con- 
stant of the time. Also, 

Let p(x I z )  denote the a posteriori probability density 
function of x given z, p(x) the a priori density function 
of x, and P(z I x) the probability density for z given x. 
Then Bayes’ rule (Ref. 1) implies that 

It will be assumed that P(z I x )  and p(x) can be calcu- 
lated to within an unknown constant. Let 

be the likelihood function including a priori information 
and k an unknown constant > 0. The function L(z, x) is 
the likelihood function which is maximized with respect 
to z when a maximum likelihood estimate that includes 
a priori information is being obtained. Then 

In the event that the loss function is quadratic, it is 
well known that the conditional parameter estimate 
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is statistically optimum. It will be shown that the method 
based on the n-dimensional Gram-Charlier expansion 
(Ref. 2)  is the indicated approach. A representation that 
is close to this approach is based on the n-dimensional 
Edgeworth series or quasimoment functions (Ref. 3), a 
rearrangement of the Gram-Charlier series that normally 
improves the convergence with respect to the uniform 
and mean-square norms. However, the n-dimensional 
Gram-Charlier expansion may not represent any prolj- 
ability density function in the mean-square sense even 
if the function is very well-behaved and is square in- 
tegrable. Examples of this will be given, and the explan- 
ation for the failure of the convergence will be discussed. 
If the cost function is not quadratic and an approximation 
of p ( x  I z) is desired which is close in the mean-square 
sense, a different approach based on the best mean- 
square approximation is used (Ref. 4). 

I I .  Properties of Two Expansions 

The dimension of the probability density distributions 
will be taken equal to 1. The generalization to n dimen- 
sions is straightforward. We start with the Gram-Charlier 
expansion. 

Let the density function p ( x )  be represented by 

i = O  1 

where Hef(x) is the Hermite polynomial of jth degree, 
and a, = 1. Explicitly, 

He&) = 1 

He, (x) = x 
and 

It is known (Ref 2) that the Hej(%) are mutually ortho- 
gonal with respect to the weight function e-x'/2. 

From the definition of Hej(.) (7) and (6), a, is the 
mean of the probability density function and 

where E is the expectation operator. Thus the mean and 
variance of the density function (if they exist) are deter- 
mined from a, and a, regardless of how poor an approxi- 
mation the series (6) is to p(x).  Likewise, it can be shown 
that moments up to mth order (if they exist) can be de- 
termined exactly from a knowledge of the coefficients up 
to ana, which are sometimes called the quasimoments. 

Conditions for the pointwise convergence of this series 
have been given by Cramer (Ref. 2, p. 223). Most of the 
important distributions used in statistics do not satisfy 
these conditions. 

It is worthwhile to examine the reasoning which has 
led some to conclude that the Gram-Charlier series, or 
the quasimoment function series, converges in the mean- 
square sense. I t  is well known that the functions of the 
form 

m 
ai Hej (x) 

j = O  

are everywhere dense in L, ( -  00 , w). Since all proba- 
bility density functions used in practice belong to 
L,  (- 00, w )  (they are bounded), one is tempted to con- 
clude that the expansion converges in the mean square. 

The fallacy in the argument is that there indeed is a 
sequence of functions of the form (9) which converges 
in the mean, but that in general the coefficients aj are 
functions of m. 

Thus an expansion which is best in the mean-square 
sense for each partial sum is desirable. Such an expan- 
sion is given by (Ref. 5) 

where the H j ( x )  are also called Hermite polynomials 
and are given by 

This expansion is called here the Hermite series as op- 
posed to the Gram-Charlier series. 
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It can be shown that the terms e-@/2Hj(x) are mutually 
orthogonal in L, (- 00, w )  (with unit weight function). 

mean-square sense for p(z) .  

Let +j(x) denote the normalized Hermite function 

As a consequence (10) is the best approximation in the (pj(x) = (2jj!~")" e-xz/2 H j ( x )  (15) 

The following theorem is proved by Sansone (Ref. 5, 
Section 4.10). 

Theorem 1. Let f ( x )  be continuous, of bounded varid- 
tion, and eL1( - 00, w ) n L,( - 00, m). Then the series 
(lo), with p(x)  replaced by f ( x ) ,  is uniformly convergent 
in any interval interior to (- w ,  a). 

Schwartz (Ref. 4) has proved the following two theo- 
rems on the rate of decrease of the coefficients bi in (10). 

Thus functions are known to be uniformly bounded on 
(- 03, 00). Professor Schwartz has pointed out (in a pri- 

vate communication) that if bi is absolutely con- 

vergent, then since lim (pi(x) = 0, the series is equal to 
zero at AZ co . Thus convergence is assured if lim f ( x )  = 0. 
Moreover, it is easy to see that convergence is then uni- 
form on (- 00, w). The series will be absolutely con- 
vergent if f ( x )  satisfies theorem 3 with r > 3. 

CO 

j = o  

x + + m  

x+ +m 

111. The Numerical Evaluation of the Coefficients 
of the Hermite Series Theorem 2. Assume that the derivative of f ( x )  exists 

and that the function [ x f ( x )  - f'(x)] EL,(- co, w). Then 
the coefficients bi, i = 1,2, -, satisfy the bound Let g(x) = e-x*/2 .;m(x), where r m ( x )  is a polynomial in 

x of degree m. Let xF , v = 1,2, . . e ,  N ,  denote the N 
zeroes of HN(x) ,  and W j  the weights for Gaussian quad- 
rature that are chosen so that 

C 
(12) pi] <- (2i) '/2 

where c is the L,( - w ,  w )  norm of [ x f ( x )  - f ' ( x ) ] .  m [ mm(x) e+' dx = 5 w~;r,(x;) (16) 
Theorem 3. Assume that the function 

J -m V = 1  

whenever 2N - 1 2 m. 

dr 
e x 2 / 2  -[ ax* ex?/, f ( x ) ]  The most extensive tabulation of the zeroes and weights 

is by Stroud and Secrest (Ref. 6). Then we have: 
- i  

Theorern4. Let g(x) = e-c*&m(x), where ~ r , ( x )  is a 
polynomial in x of degree m or less. Then 

(13) 

exists and is square integrable. Then the coefficients 
bi, j = 1,2, ' 1 . )  are bounded by 

(14) 

where C(T) is the La( - w ,  co) norm of (13). 
provided N is chosen so that m + i 5 2N - 1. 

Comment. The L, assumption on the function in (13) 
can be replaced by an L, requirement. Thus the existence 
of high-order moments and the existence and integra- 
bility of high-order derivatives of a probability density 
function insure the rapid convergence of the Hermite 
series. 

Proof. We write the integral in the form 

l I [ g ( x )  ex212 ~ ~ ( x ) ]  e - c ~  d 3 ~  (18) 

and note that the quantity in the brackets is a poly- 
nomial of degree i + m at most. Then (17) follows from 
the result on Gaussian quadrature. 

Another question which may arise is whether the series 
(10) is convergent on the complete interval (- 00, co). 
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This preceding formula suggests that we choose as an We now discuss an extrema1 property of (19) which is 
important when (19b) is truncated. In other words, sup- 
pose that we consider the approximation 

approximation for bi the following: 

and 
where M 5 N-1. Then we have: 

N - 1  

P N ( 4  = C v = o  by +i(4 (lgb) Theorem 7. The approximation (19c) is the weighed 
least-squares approximation to p(x)  at the points x:, 
v = 1, 2, - e * ,  N with weights equal to W: exp [(x:)~]]. Let xl, xz, a * . ,  x N  be N distinct values of x, and: 

Lemma. Let + j  (see Eq. 15) be a vector with n com- 
ponents +j(xl), + j (xz ) ,  ..., + j ( x N ) .  Then the vectors 

More exactly 

+1, . - e ,  (PN-l  are linearly independent. N 

J = [ d x 3  - zci + i ( ~ 3 ] ~ W f :  ~ X P  [(x3’1 
v = 1  

Proof. It is well known that the polynomials Hi con- - -  
sidered as vectors with elements El i (~ , ) ,  Hj(x , ) ,  * *  -, H j ( x ~ )  
are linearly independent. Then the array of vectors 
bi, i = 0,1, ..., N- 1 are independent since it can be 

is minimized with respect to the coefficients cj if each cj 

is made equal to by given in (19a). 

formed by the matrix multiplication of a diagonal matrix 
with nonzero elements and the E l j .  N 

Proof. Define the scalar product <d, e> = dieiW6 

Theorem 5. p ( x )  = pN(x)  at x:, v = 1,2, e . . ,  N. 
i=l 

where d, e and W are N-dimensional vectors. Then (19a) 
can be written as 

Proof. We can determine a unique combination of 
N - 1  N - 1  

Hermite polynomials 

bv Hv(x)  = p ( x )  at the N points x:. This follows from the 
previous lemma. It is clear that (loa) is an exact equality 
if p ( x )  is a finite Hermite series. From (17) and (10) we 
can determine these coefficients exactly by (19). 

bv Hv(x)  such that e””/2 
v = 1  v = 1  

where 

Wi = WF exp [ ( ~ 9 ~ ]  
From theorem 5 we have 

Theorem 6. The approximation given by (19) is the 
best approximation in the mean square whenever 
the function to be approximated p(x) is given by 

The conclusion of the theorem follows from a standard 
result of Hilbert space theory when p z  is viewed as a 
projection of p(xY)  on the M + 1 dimensional subspace 
generated by the +. 

N 

(‘O) p ( x )  = c bi $4.) 
i = O  

and N interpolation points or more are used. 

It is of interest to tabulate the weights for various 
values of N(4,8,16) (Table 1). In column 1 of this table 
we give the value of xv, starting with the smallest in 
absolute value. The negative values of xv are not given 
because of symmetry. In the third column, the weights 
for the scalar product (Wf: exp (xr)) are given. We next 
show that these weights are approximately proportional 
to the distance between the x:. 

N - 1  

proof. The approximation .p”(x) = bi (pi(x) and 
i = O  

p ( x )  can differ only by bN + N ( x ) .  

This result leads one to suspect that (19) is a good 
approximation in the mean-square sense whenever p(x)  
has a rapidly converging Hermite series. 
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Table 1. Relationship between scalar product 
weights and interval lengths 

N = 4  
0*52465 
1*65068 

Interpola- lntermediaf6 W C  /interval 

tion point point W: exp (x r ) '  = Wc length 

1.05996 1.01 01 7 
1.24023 1.031 14 

0 
1.04930 
2.25207 

0 
0.76237 
1.55201 
2.41 130 
3.44997 

0.76454 
0.79289 
0.86675 
1.07193 

N = 8  
0.38119 
1.1571 9 
1.98166 
2.93064 

N =  16 
0.27348 
0.8 2295 
1.38026 
1.95 179 
2.54620 
3.17700 
3.86945 
4.6 8 8 74 

1.00285 
1.00412 
1.00869 
1.03202 

0 
0.54696 
1.09894 
1.66158 
2.24200 
3.50359 
3.50359 
4.23530 
5.14218 

0.54738 
0.55244 
0.56322 
0.581 25 
0.60974 
0.65576 
0.73825 
0.93687 

I 

1.00076 
1.00084 
1.001 04 
1.001 42 
1.0021 9 
1.00393 
1.00893 
1.03308 

We now make precise the manner in which we will 
compare the discrete approximation for the Fourier co- 
efficients (19a) to the continuous one (lob). We use the 
quadrature formula 

which has a truncation error of about half the error of 
the trapezoidal rule. We now find "intermediate points" 
yr v = 1,2, . a * ,  N + 1 such that each x:  is in the center 
of the interval [y:, y;,,]. These points are given in 
column 2 of Table 1. Thus we can associate an interval 
length y:+l - y: with each x ; .  The ratio of the weights 
(in column 3) divided by the interval length is given in 
column 4. It can be seen that this ratio is approximately 
equal to 1. Thus if Jp'(x)dx were zero outside the inter- 
vals that we cover here, (19a) would be a rough numer- 
ical approximation to (lob). 

However, more can be said about this approximation 
as N +  0 0 .  We consider the values in column 4 which 
we associate with x = 1, 2, 3, and 4. Thus for x = 1 and 
N = 16 we associate the first interval shown with this X ,  

and the ratio is 1.00084. In Fig. 1, we show how this ratio 
minus 1 approaches zero with increasing N .  

If p ( x )  EL(- tu, CQ) then Jp*((x)dx is essentially zero 
outside some finite interval (a, b). Within this interval 

NUMBER OF INTERPOLATION POINTS N 

Fig. 1. Numerical data to support conjecture 
that lim a; = aj 

N - m  

our numerical approximation for the Fourier coefficients 
seems to approach the exact value, provided the integral 
in (lob) exists as a Riemann integral. Thus it is not 
unreasonable to state the following: 

Conjecture. 
lim a;= aj (5) 

3,- m 

whenever the integral in (lob) exists as a Riemann 
integral. 

Later we will need to calculate the area and moments 
of the unnormalized probability distribution. By making 
use of the recurrence relation (11) and the relation for 
the derivative 

e42/2 Hj(x)dx = -2 

+ 211b Hj-l(x)e""/2 & (27) 
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It easily follows that be denoted by 

n 

i = 0,2,4, - Sm(x) = bi +i(x) 
i = O  

and the area of each of these by 
= O  

Thus one method which suggests itself for approxi- 
mating an unnormalized probability density function is 
to use (28) to evaluate the area of the approximation 
ps(x),and to divide the coefficients bi by this factor, which 
will make the resulting area equal to 1. The question 
now arises as to whether this sequence will converge in 
the mean square to the probability density function, since 
the best mean-square approximations for this function 
may not have unit area. A partial answer is provided by 
theorem 9, which depends in part on an extrapolation 
of numerical data. This theorem concerns the nature of 
the oscillations of +,(x), which are roughly sinusoidal, 

and the area Jn” +,(x)dx, where R is large. It has been 

found empirically that for R > 0, 

sidered as a function of R assumes its greatest value for 
R equal to the largest zero of &(x). Call the resulting 
value of the integral R,. Also, the ratio of R, to f; +n(x)dx 
appears to approach a limit as n tends to infinity or at 
least to decrease very slowly. For n = 88,96,104,120, and 
136, R,/J; +,(x)dx is 1.27982, 1.27950, 1.27922, 1.27878, 
and 1.27842. At any rate it seems reasonable to assume 
that for n 2 88 the ratio is less than 1.28. 

1 JR +n(x)dx con- I 

Another result that will be needed is the simplification 
in evaluating J:m b, +n(x)dx based on (28). It can easily 
be shown that 

n = 2,4,6, * . (29) 

and 

00 

Then lim k, = 1 provided that bi is absolutely 

convergent. 
w m  i=O 

Proof. For a given E > 0 an N (  E) will be shown to exist 
that depends on the sequence such that 1 A, - 1 I < E for 

n 2 N(E) .  From the fact that bi is absolutely con- 

vergent, there exists an integer K such that 

m 

i=O 

(33) 

Next an R > 0 can be found (since p and SK EL( - to, to)) 

such that 

and 

Within (- R, R) it is known that L, convergence implies 
L, convergence (here the measure of the domain of the 
function is finite), and so when the error of the approxi- 
mation is less than ~ / 4  within the interval, the total error 
for the area will be less than 4 4  plus ~ / 4  contributed 

by the tails of bi +i(x), plus e/4 from the tails of 

p ( x )  and ~ / 4  from the tails of bi+i(x). 

W 

i=K+l 
K 

i=O 

Thus we have shown that as far as the Cauchy prin- 
ciple value of the integral of the approximation is con- 
cerned, the error in the area tends to zero. It is easy to 
show that under the given hypothesis the area of the 
approximation exists no matter which way the limit is 
taken. It is then a simple matter to prove. 

1: +o(lt)dx = (v(rr) % (30) 

Theorem 8. Let p ( x )  be a true probability density 
function having unit area. Let the partial sums of (10) 
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Theorem 9. Consider the modified sequence of the 
partial sums of (lo), S,(x)/A, for a probability density 
function p(x ) .  If lim A, = 1 then L, convergence to p ( x )  

occurs. 
w m  

To find the moments one may use the recurrence 
relation (11) together with (28). 

Thus we see one way of finding the area of the un- 
normalized probability distribution and its moments is 
to take the approximate solution, p N ( x )  defined by (19), 
and to use (29) and the recurrence relation to obtain the 
area and moments. Our experience with this method has 
been good, and for functions which closely resemble the 
Gaussian distribution the results have been better than 
for the following method, which can be better justified 
theoretical1 y. 

An alternative method of finding the area and moments 
is to multiply the value of p ( x )  at the interpolation points 
by x, x2, etc., and to find the area of the resulting functions. 
This procedure seems to work better when p ( x )  is not 
approximately Gaussian. 

IV. The Expansion in Hermite Functions: 
Finite Dimensional Case 

For the case where x is of dimension k, f(x) = f(x,, xz, 
* . ., X k )  can be represented by 

where 

provided f(x)eL, in the k-dimensional space. This 
follows from the well-known result that the products 
+jl(xl) +j2(x2), - * e ,  + j k ( x k )  are orthonormal and form a com- 
plete system in the space of square integrable functions 
of the k-dimensional product space whenever +pj(x) are 
orthogonal and complete in the one-dimensional space. 

In order to evaluate the coefficients we make use of a 
generalization of the theorem on Gaussian quadrature for 
a product space, see Stroud and Secrest (Ref. 6).  

Theorem 10. Let &, and Wv be the zeroes and weights 
for the Gaussian quadrature in one dimension for interval 

(u,b). Then for polynomials pji(xi), i = 1,2, e . . ,  k 

whenever the degree ii of each polynomial pj , (xi)  is less 
than or equal to 2N-1. 

The theorem can be proved by mathematical induction 
by writing the integral in iterated form. If now we define 

Then 

V. An Example of the Use of the Method 
Based on the Hermite Expansion 

Suppose we wish to estimate 6 in a nonlinear function 
f( 0,t) = 100 sin (t + e) and have two observations yi made 
at t = 0" and t = 1" of 87.6025 and 86.4307. We assume 
that the errors of the two observations are independent 
Gaussian variables with zero mean and unit variance. 
Then it can be shown that at least one local minimum 
for the sum of the squares of the residuals is at 8 = 60". 

Let 

1 A=-?.f-l =[ 100 COS (e) 

ae t=tc  100 cos (6 -I- 1") 

where the derivatives are with respect to a change in 6 in 
radians. Then it can be verified that the normal equations 
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are satisfied for A0 I= 0. (ATA)-l is an estimate of the 
variance of the MLE estimate in radians. The resulting 
standard deviation is 0.822685" for the estimate for 0. 

We now expand the conditional probability density by 
(lo), using the variable 

8-60" 
It = 0.822685" 

To do this, we evaluate p(ylx) at the selected points 
given by the zeroes of H,(x). If we do not know the 
a priori probability density we can set that factor equal 

Name of 
distribution 

Jnknown 
phase angl, 
problem 

lauchy 
distribution 

Equation 

Iescribed in Section V 

1 
r(l + 2) 

to 1. The p ( x )  p(ylx) is proportional to 

where 0 = ~(0.822685") + 60. 

We list the approximate area and moments in Table 2 
for various N .  I t  turns out that the conditional probability 
density is noticeably skewed and that the expected value 
of x is about 0.03834. Thus the nonlinear estimate differs 
from the maximum-likelihood estimate by an amount of 
about 4% of the estimated standard deviation. 

Table 2. Convergence of Hermite series 

Remarks 

*lo mo- 
ments 
exist; odd 
Fourier 
coeffi- 
cients are 
zero and 
are not 
given 

First 1Q 
Fourier 

oefficients 

0.47462 
0.00003 
0.00640 
0.0001 3 
0.00038 
0.00002 
0.00524 
0.00000 
0.00033 
0.00000 

0.39296 
0.00974 
0.01 397 
0.01 31 6 
0.05602 
0.00757 
0.01 267 
0.00880 
0.023 13 
0.00605 

- 

kale 
actor 

- 
Degree 
)f poly- 
nomial 
for ref- 
erence 

59 

40 

- 
N or 

lumber 
Nf inter- 
olation 
points 

72 
- 

2 
3 
4 
5 
6 
7 
8 
9 
10 
12 

72 
- 

2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
14 
16 
20 
24 
28 
32 
36 
40 - 

Area of 
unnor- 
malized 
distri- 
bution 

0.89464 

0.89351 
0.89378 
0.8 940 2 
0.89436 
0.89450 
0.89464 
G.89464 
0.89464 
0.89464 
0.89464 

l a  

0.68300 
0.71 639 
0.753 08 
0.81214 
0.80872 
0.8 1753 
0.831 27 
0.8 4 9 3 3 
0.85155 
0.86382 
0.87482 
0.88278 
0.89558 
0.90497 
0.91 223 
0.91806 
0.92287 
0.92694 

Mean 

0.03834 

0.00636 
0.01 904 
0.03808 
0.038 1 1 
0.0381 8 
0.03823 
0.03830 
0.03832 
0.03834 
0.03834 

fariance 

I .00607 

).99996 
I .00060 
I .00034 
I .00296 
I .00417 
I .00599 
I .00600 
I .00603 
I .00604 
I .00607 

- 

.2(- w,wl 
norm of 

listribution 

0.47470 
1 2  norm 
of error 

0.00759 
0.00589 
0.00055 
0.00026 
0.0001 7 
0.00002 
0.00001 
0.00001 
0.0 0 0 0 0 
0.00000 

0.39883 

0.1 5409 
0.1 8979 
0.13865 
0.1 01 68 
0.098 1 1 
0.098 1 1 
0.08649 
0.07543 
0.07339 
0.06661 
0.06001 
0.05561 
0.04842 
0.04327 
0.03936 
0.03625 
0.03371 
0.031 57 

J-m,w 
norm of 

listributioi 

0.35690 
1, norm 
of error 

D.005 1 2 
0.00362 
0.00028 
0.0001 5 
0.0001 2 
0.00002 
0.00001 
0.00000 
0.00000 
0.00000 

0.31 830 

0.09920 
0.12916 
0.08899 
0.07385 
0.06326 
0.071 05 
0.05736 
0.05647 
0.04999 
0.04569 
0.04309 
0.03951 
0.03557 
0.03252 
0.03006 
0.02804 
0.02635 
0.02491 

8 JPL TECHNICAL REPORT 32-1366 



Table 2 (contd) 
~ 

Name of 
listribution 

lormalized 
student t 
distribution 
v = 3  

.(ormalized 
student t 
distributior 
v = 20 

Equation 

Same 

Remarks 

3rd and 
higher 
moments 
do not 
exist. Odd 
Fourier 
coeffi- 
cients 
are zero 
and are 
not given. 
The prob- 
lem i s  

scaled so 
that the 
variance 
i s  1. 

20th and 
higher 
moments 
do not 
exist. Odc 
Fourier 
coef f i  - 
cients are 
zero and 
are not 
given. 
The prob- 
lem i s  
scaled so 
the vari- 
ance i s  1. 

First 10 
Fourier 

oefficients 

0.59931 
-0.01955 
-0.1 5988 

0.01488 
0.09454 

-0.00923 
-0.04784 

0.00747 
0.03347 

-0.00476 

0.53658 
-0.00002 
-0.01 497 

0.00005 
0.00841 
0.00000 

-0.00053 
0.00001 
0.00050 
0.0 0 0 0 0 

- 
kale 
actor 

7 

legree 

iomial 
or rd- 
wence 

42 

F poly- 

- 

- 
48 

- 
N or 

lumber 
if inter- 
lolation 
points 

72 

2 
3 
4 
5 
6 
7 
8 
9 

10 
1 2  
14 
16 
20 
24 
28 
32 
36 
40 

72 
- 

2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
14 
16 
20 
24 
28 
32 
36 

- 
Area of 
unnor- 
malized 
distri- 
bution 

la 

0.91 067 
0.89227 
0.92577 
1.07668 
0.98920 
0.95940 
0.98238 
1.021 15 
0.99623 
0.99305 
0.99771 
0.99634 
0.99770 
0.99839 
0.99879 
0.99904 
0.99922 
0.99934 

1. 

1.00250 
0.98099 
0.99 106 
1.00048 
0.99963 
0.99906 
0.99950 
0.99997 
0.9999: 
0.99995 
0.99994 
0.99995 
1 .ooooc 
1 .ooooo 
1 .ooooo 
1 .ooooc 
1 .ooooo 

Mean 

0" 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0" 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 
lariance 

I "  

I .ooooo 
3.57690 
3.40307 
1.29662 
D.80793 
0.7035C 
0.5942C 
1.1 3392 
0.79025 
0.6 9 0 6 C 
0.796 11: 
0.7455r 
0.7802: 
0.8039t 
0.821 3C 
0.83457 
0.8451 : 
0.8538( 

I n  

1 .OOOO( 
0.87764 
0.9232: 
1.00255 
0.9945! 
0.9856; 
0.991 5; 
0.9992: 
0.9984; 
0.9986 
0.9995 
0.99971 
0.9999 
0.9999; 
0.9999' 
1.00001 
1 .OOOO( 

,(--co,oc 
norm of 
irtribution 

0.63078 

0.20823 
0.22725 
0.1 2473 
0.08371 
0.07643 
0.07540 
0.051 22 
0.0391 4 
0.03452 
0.02477 
0.01 755 
0.01 31 7 
0.00748 
0.00446 
0.00276 
0.001 76 
0.001 45 
0.00075 

0.53685 

0.0 1803 
0.01588 
0.00970 
0.001 04 
0.00084 
0.00086 
0.00057 
0.00007 
0.00008 
0.00006 
0.0000 1 
0.00001 
0.00000 
0 
0 
0 
0 

J- t0,co' 
norm of 
istribution 

0.63662 

0.23 76 8 
0.15721 
0.1 1861 
0.05637 
0.08905 
0.05 155 
0.052 19 
0.02778 
0.03988 
0.02545 
0.01 979 
0.01332 
0.00783 
0.00492 
0.00321 
0.002 17 
0.00151 
0.001 09 

0.41 530 

0.01 636 
0.00896 
0.00657 
0.00066 
0.00068 
0.00043 
0.00039 
0.00004 
0.00007 
0.00004 
0.00001 
0.00001 
0.00000 
0 
0 
0 
0 
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Table 2 (contd) 

Degree 
D f  poly- 
nomial 
for ref- 
erence 

Name of 
distribution 

ixtreme- 
value 
(Fisher- 
Tippett 
Type I or 
doubly 
exponen- 
tial) 

N o r  
number 
of inter- 
polation 
points 

Equation 

First 10 
Fourier 

coefficients 

BDerived from theoretical colculotions. 

factor 
Remarks 

0.54675 
-0.01 154 
0.1 1041 

-0.006ao 
- 0.06823 
0.01 a60 
0.03681 
0.00485 
0.05202 

-0.006ao 

1 

6 
7 

9 
10 
12 
14 
16 
20 
24 

a 

28 
32 
36 
40 

Area of 
unnor- 
malized 
distri- 

bution 

1 %  

0.98605 
0.86619 
0.95 8 5 2 
1.00335 
0.99298 
0.98698 
0.98915 
0.99462 
0.99696 
0.99776 
0.99842 
0.99938 
0.99978 
0.99988 
0.99992 
0.99995 
0.99996 
0.99998 

P 

Mean 

0.45005" 

0.18216 
0.41 599 
0.44955 
0.37539 
0.33656 
0.39996 
0.47332 
0.43703 
0.40499 
0.45280 
0.43815 

0.44498 

0.44863 

0.44531 

0.44690 

0.44962 
0.45003 
0.4501 2 

Variance 

I n  

0.96682 
0.0961 7 
0.46446 

0.961 30 
0.80530 

1 .os668 

0.78691 
0.88470 
0.96062 
0.92991 

0.97969 
0.99354 
0.99594 
0.99621 
0.99671 
0.99755 

0.95782 

0.99842 

,(-w,w 
norm of 
istributim 

0.56625 

0.10732 
0.1 3543 

0.0331 1 
0.031 67 
0.02521 

0.01311 
0.01 083 
0.00587 
0.00439 
0.00274 
0.001 35 

0.00036 
0.00020 
0.0001 1 
0.00006 

0.06852 

0.01 708 

o.00068 

21(-w,w 
norm of 

listributior 

0.471 a 2  

0.09696 
0.1 2287 
0.06896 
0.03226 
0.02641 
0.02094 

0.01405 
0.01 1 ao 

0.00781 
0.00549 
0.00406 

0.001 2 1 
0.00039 
0.00029 
0.00019 
0.0001 1 
0.00005 

0.00285 

VI. Checks of Convergence on Standard 
Probability Density Functions 

We now use our method to calculate approximations 
to some standard probability density functions whose 
properties (moments, etc.) are known. We chose various 
one-dimensional distributions to see how fast the method 
converges. Since different uses may be made of the 
probability distribution, we will report on a number of 
measures of how the approximation fits the distribution, 
including the error in the first two moments, the L, 
(-a, a) norm, and the uniform norm [Lm(-a,  a)]. 
It is hoped that it will be possible to obtain analytic 
results which will characterize the convergence of this 
method for different classes of functions, 

In describing the rate of convergence of the method, 
it is important to establish whether the different errors 
converge to zero as N ,  the number of interpolation 
points, goes to infinity. Thus in our numerical study it is 
desirable to use as high a value for N as possible. But 
here a difficulty with our method of computation was 
encountered in that machine overflow occurred for values 
of N as low as 26. This was because the nature of growth 

of the value of high-degree polynomials, etc., and the 
limited range allowed for the magnitude of number on 
the IBM 7094 in double precision). The problem 
was reprogrammed using various artifices to keep the 
numbers within bounds. Now overflow has not occurred 
for N less than 42. 

We list the results for various distributions in Table 2. 
In the first row we give the name of the distribution, its 
equation when it is simple, remarks, and its first ten 
Fourier coefficients. The scale factor refers to the fact 
that the unit used for the interpolation points may not 
correspond to the unit for the independent variables of 
the distribution. We found that generally it is best to 
scale the problem so that one unit of the scale for the 
interpolation points corresponds to one standard devi- 
ation of the distribution. The scale factor s is defined 
as follows: 

where P ( x )  is the distribution in terms of the scale for the 
interpolation points, and p(n) is the usual definition of 
the distribution. 
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In order to calculate the L, norm of the error of the 
approximation we needed a reference approximation for 
the distribution in which the Fourier coefficients are 
accurately known. A compromise solution was found in 
which a fixed number of interpolation points (72) was 
used, and the Fourier coefficients were calculated until 
machine overflow resulted. Thus in the first example the 
first 60 coefficients are known. The rest were arbitrarily 
set equal to zero. It can be shown that, for those examples 
where the coefficients converge reasonably rapidly, this 
results in a good approximation in L, ( -  co, co). The L, 
norm of the error of the approximations is obtained from 

(5 (ai - q2 
i=O 

where Zi is the coefficient from the reference calcula- 
tion. The moments were obtained by calculating the 
moments of the approximating function, which was nor- 
malized to have unit area. 

This study was limited to an examination of differen- 
tiable density functions and included others besides those 
listed here. The origin was chosen to be the mode of the 
density (all our distributions were unimodal) since it was 
thought that in applications a first approximation would 
be available from a maximum likelihood estimate which 
would be close to the mode of the distribution (we do 
not assume that the maximum likelihood estimate is cal- 
culated correctly). Our findings indicate that for these 
distributions all of the error norms that we considered 
converge to zero as N approaches infinity. In addition, it 
appears that the choice of a scale factor equal to the 
standard deviation is about as good as can be made. 

For smooth functions it was felt that there was no 
point in using anything but approximations which inter- 
polate the unknown functions. In examples where trun- 
cation of the series was tried and weighed mean-square 
discrete approximation was obtained, the results were 
always worse than if the interpolated approximation was 
used (both approximations using the same number of 
function evaluations). 

VII. The Numerical Evaluation of the Coefficients 
of the Gram-Charlier Expansion 

We next show how to evaluate integrals such as (6b) 
by an approximate numerical method. A Monte Carlo 
method has already been given (Ref. 7). Any integra1 of 

the form 

where w(x) is a weight function can be evaluated by 
means of a Gaussian quadrature. Here [a, b] may be a 
finite or infinite interval of the real axis. A weight func- 
tion w(x) must be such that the moments 

x” w(x) ax = pn (n = 0,1,2, * * e )  

exist and are finite for each n, and w(x) 2 0 on [a, b].  
For any weight function one can construct a correspond- 
ing sequence of orthogonal polynomials. Then one has 
the theorem due to Gauss and Jacobi, which is proved in 
most tests on numerical analysis: 

Theorem. Let W ( X )  be a weight function for the inter- 
val [a, b].  There exist real numbers xl, x,, * .  *, xw, W,, 
W2, * ., Wn. having the properties 

N 

y(x) w(x) dx = W, ~ ( x V )  
v-1 

is true for every polynomial y(x) of degree 5 2N-1. 

Incidentally, the xv are the N zeroes of the Nth-degree 
orthogonal polynomial determined by the weight func- 
tion +Ar(x), and the W, can also be obtained by various 
methods from the associated polynomials. These quan- 
tities are tabulated for many of the classical polynomials. 

Unfortunately, the Gaussian quadrature formulas are 
not given for He,(x), but for H,(x) .  By a suitable trans- 
formation we can make use of the published formulas. 
Let rn([) be a polynomial of degree n or less. 

where 2m- 1 5 n, and the W? and [ y  are tabulated. 
Now, let 6 = x/(2)*/”. The (41) becomes equal to 
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Define a new nth-degree polynomial cp,(x) = r,, (x/(2)%). Then, 

Finally, we give a formal derivation of the result. We shall use 

where r N ( x )  is an Nth-degree polynomial in x which is part of the approximation of the integrand. 

1 2% M 
= lim lim - - (2)* Wf, [ (2%) t;] Hem [ (2%) tf] 

M+m N+m m! (2+" i=l 

M+m m! i=1  

M 
(43) 

1 = lim - (2)% Wy p[(2)"  6 3  exp [ ( t f )2]  H e ,  [(2)" t f ]  

This result can be justified in the same manner as for 
the Hermite series. 

For the n-dimensional case, the products exp ( - x ;  / 2 )  
Hei,(xl) exp ( - x 2 , / 2 )  Hej,(x,), are used as before. The 
method of calculating the corresponding coefficients is the 
same as for the Hermite case. 

V111. An Optimal Property of the Gram-Charlier 
Expansion 

Theorem. Assume that p ( x )  is given exactly as a com- 

bination aicpi(x), or alternatively as a combination 

ed'l2 [ 5 bi H e i ( x ) ]  . Then the approximation obtained 

by using n interpolation points based on the Gram- 
Charlier expansion (43) is exact as far as the area and 
moments up to the (n- 1)th order. 

m 

i = O  

i = O  

Proof. Since the method based on the Gram-Charlier 
expansion is an interpolation using the zeroes of He,(x), 
the result will be exact as far as the first n coefficients 
go, (b,,b,, e . * ,  l ~ , - ~ ) .  These determine the first n-1 mo- 
ments of the distribution, and the first n- l  moments of 
the distribution (and the area if the distribution is not 
normalized) determine these coefficients. 

IX. Checks on Convergence on Various 
Probability Density Functions for the 
Gram-Charlier Approximation 

In Table 3 we give some results which correspond to 
the cases that have previously been done by the Hermite 
series. It can be seen that the mean and variance con- 
verge more rapidly, but that mean-square convergence 
or uniform convergence need not occur even for smooth 
functions for which all the moments exist. For instance, 
for the extreme value distribution using 40 interpolation 
points, the area and mean are correct to five decimal 
places for the Gram-Charlier, but off in the fifth and 
fourth place, respectively, for the Hermite series. How- 
ever, the L, norm and L, norm of the error of the Gram- 
Charlier approximation diverge in all except one case. 

X. Scaling for the k-Dimensional Probability 
Density Function 

It is easily verified that if the distribution is Gaussian 
and is scaled so that the mean is zero and the variance 
covariance matrix is the unit matrix, then all the c o d -  
cients for the Gram-Charlier expansion or the Hermite 
series expansion are zero except for aoo, or boo, . . a ,  

which equal 1. This suggests scaling the variables so that 
in the new variables the mean is zero and the variance 
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Table 3. Convergence of Gram-Charlier approximation 

Name of 
distribution 

Unknown phase angle 

Cauchy distribution 

Normalized student 
t distribution, Y = 3 

Normalized student 
t distribution, Y = 20 

Scale 
factor 

1 

1 

( 3 P 

1.0540 

Number of 
nierpolaiion 

points 

72 
2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
14 

2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
14 
16 
20 
40 
48 

2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
14 
16 
48 

2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
14 
20 
36 
56 

Area 

0.89464 
0.89371 
0.89420 
0.89464 
0.89464 ' 

0.89464 
0.89464 
0.89464 
0.89464 
0.89464 
0.89464 
0.89464 

0.65774 
0.82991 
0.78 86 1 
0.b5464 
0.84093 
0.87276 
0.86864 
0.88631 
0.88590 
0.89780 
0.90661 
0.91 347 
0.9 2 3 59 
0.94733 
0.95215 

0.65774 
1.21 284 
0.84759 
1.09702 
0.92305 
1.04953 
0.95777 
1.02707 
0.97536 
0.98491 
0.99038 
0.99365 
0.99979 

0.97285 
1.00220 
0.998 10 
1.0001 4 
0.99979 
1 .ooooo 
0.99997 
1 .ooooo 
0.99999 
1 .ooooo 
1 .ooooo 
1 .ooooo 
1 .ooooo 
1 .ooooo 

Mean 

0.03834 
0.01 270 
0.03808 
0.0381 8 
0.03830 

0.03834 
0.03834 
0.03834 
0.03834 
0.03834 
0.03834 

0.03834 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Variance 

1.00607 
not defined 
1.00046 
1.00405 
1.00600 
1.00604 
1.00606 
1.00607 
1.00607 
1.00607 
1.00607 
1.00607 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

not defined 
0.36854 
0.86082 
0.5581 1 
0.82206 
0.66315 
0.81389 
0.72590 
0.8 1655 
0.8231 I 
0.83084 
0.83861 
0.90469 

not defined 
0.92257 
0.99545 
0.99057 
0.99850 
0.99838 
0.99955 
0.99963 
0.99985 
0.99995 
0.99998 
1 .ooooo 
1 .ooooo 
1 .ooooo 

1, norm 

of error 

0.00000 
0.00637 
0.00926 
0.00073 
0.00026 
0.00056 
0.0001 2 
0.00003 
0.00005 
0.00002 
0.00001 
0.00000 

0.1 5407 
0.14425 
0.13492 
0.08738 
0.1 2698 
0.10223 
0.3 1 294 
0.1 21 24 
0.86881 
3.06090 
11.80041 
49.40664 
0.102 x 10' 
0.204 X 10" 
0.250 X loi4 
0.20799 
0.1 2301 
0.1 8303 
0.08 198 
0.1 1766 
0.06892 
0.1 2469 
0.04485 
0.03654 
0.22953 
0.50863 
2.02287 
0.294 X 10" 

0.01 803 
0.00974 
0.01714 
0.001 17 
0.001 23 
0.001 26 
0.00352 
0.0001 5 
0.001 30 
0.00244 
0.00285 
0.01 690 
0.597 X 10' 
0.533 X IO8 

1, norm 
of error 

0.00000 
0.00436 
0.00724 
0.00052 
0.00020 
0.00049 
0.0001 0 
0.00003 
0.0 0 0 0 5 
0.00002 
0.00001 
0.00000 

0.099 13 
0.09250 
0.09066 
0.05555 
0.1 1324 
0.0692 1 
0.23 133 
0.09026 
0.761 46 
2.59333 
10.21 137 
42.8568 2 
0.895 x io3 

0.22 x loi4 
0.183 X 10" 

0.23768 
0.1 1 1  72 
0.20991 
0.068 13 
0.14354 
0.05695 
0.14404 
0.03975 
0.04593 
0.22499 
0.41 463 
1.77571 
0.263 X lo'* 
0.01636 
0.00657 
0.01 545 
0.00091 
0.001 35 
0.00090 
0.0031 7 
0.0001 1 
0.001 04 
0.0021 3 
0.00245 
0.01 478 
0.533 X IO2 
0.479 X 10' 
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Table 3 (contdl 

Name of 
disfribution 

Extreme value 

Scale 
factor 

1 

Number of 

nferpolation 1 Area 
points 

2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
20 
32 
40 

0.8 1657 
1.02431 
0.98532 
0.98253 
1.01088 
0.985 18 
1.00778 
0.99343 
1.00239 
0,99969 
0.99991 
0.99999 
1 .ooooo 

Mean 

0.3641 8 
0.39141 
0.35252 
0.4721 4 
0.39468 
0.4641 8 
0.42780 
0.45136 
0.44489 
0.45080 
0.44975 
0.45007 
0.45005 

covariance matrix is approximately the unit matrix. To 
illustrate, assume that x is scaled so that the mean is 
already approximately zero and the variance covariance 
matrix of x, E ( x  x T )  = A is a positive definite matrix. Let 
L be a lower triangular matrix such that 

Then 

and 

A = L L T  (44) 

Variance 

not defined 

0.53758 
0.95907 
0.77955 
0.961 66 
0.91741 
0.95980 
0.97471 
0,96709 
0.97845 
0.99928 
0.99980 
0.99998 

1, norm 
of error 

0.1 0223 
0.08334 
0. ’1 0672 
0.04019 
0.043 1 2 
0.07504 
0.05766 
0.02371 
0.06557 
0.13009 
6.1 6576 
0.922 X lo4 
0.212 x 10‘ 

E ( x x T )  = E(LXXTLT) = A 

L, norm 
of error 

0.09394 
0.07552 
0.09395 
0.03835 
0.0471 9 
0.071 14 
0.05532 
0.02370 
0.06054 
0.10453 
5.34279 
0.818 X lo4 
0.190 X 10‘ 

E ( X  X’) = L-l A = I (46) 
where L can be determined by the Choleski or square 
root method. Let X be the transformed variable such that 

x = LX (45) 

Thus the new variables have the required property. The 
interpolation points are given in terms of the X and 
transformed by (45) into the old variables. 
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